Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 448: 130858, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36706488

RESUMO

The fluctuation of environmental conditions drives the structure of microbial communities in estuaries, highly dynamic ecosystems. Microorganisms inhabiting estuarine sediments play a key role in ecosystem functioning. They are well adapted to the changing conditions, also threatened by the presence of pollutants. In order to determine the environmental characteristics driving the organization of the microbial assemblages, we conducted a seasonal survey along the Adour Estuary (Bay of Biscay, France) using 16S rRNA gene Illumina sequencing. Microbial diversity data were combined with a set of chemical analyses targeting metals and pharmaceuticals. Microbial communities were largely dominated by Proteobacteria (41 %) and Bacteroidota (32 %), showing a strong organization according to season, with an important shift in winter. The composition of microbial communities showed spatial distribution according to three main areas (upstream, middle, and downstream estuary) revealing the influence of the Adour River. Further analyses indicated that the microbial community was influenced by biogeochemical parameters (Corg/Norg and δ13C) and micropollutants, including metals (As, Cu, Mn, Sn, Ti, and Zn) and pharmaceuticals (norfloxacin, oxolinic acid and trimethoprim). Network analysis revealed specific modules, organized around keystone taxa, linked to a pollutant type, providing information of paramount importance to understand the microbial ecology in estuarine ecosystems.


Assuntos
Sedimentos Geológicos , Microbiota , Sedimentos Geológicos/química , RNA Ribossômico 16S/genética , Rios/microbiologia , Metais/toxicidade , Estuários , Preparações Farmacêuticas
2.
Mar Pollut Bull ; 186: 114400, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36462415

RESUMO

Total and dissolved concentrations of inorganic mercury (IHg) and methylmercury (MeHg) in water (Adour Estuary) were determined during three sampling campaigns and related to biogeochemical variables (nutrients, organic matter). Factors (sampling time, sample type) were included in analysis of covariance with effect separation. The urban estuary suffered historically from anthropogenic sources, however, decreased emissions have reduced Hg concentrations. Total IHg (0.51-3.42 ng L-1) and MeHg (25-81 pg L-1) concentrations are additively described by suspended particulate matter and particulate organic carbon. Higher total concentrations, carried by organic-rich particles, were found near specific discharge points (0.79-8.02 ng L-1 and 34-235 pg L-1 for IHg and MeHg, respectively). The associated high dissolved MeHg concentrations could not be explained only by biogeochemical variables. Better efficiency of the models is found for total than for dissolved concentrations. Models should be checked with other contaminants or with estuaries, suffering from downstream contamination.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Mercúrio/análise , Compostos de Metilmercúrio/análise , Estuários , Monitoramento Ambiental , Poluentes Químicos da Água/análise , França
3.
Mar Pollut Bull ; 166: 112172, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33631695

RESUMO

Mercury (Hg) is a contaminant of global concern in marine ecosystems, notably due to its ability to accumulate and concentrate in food webs. Concentrations of total mercury (THg), methylmercury (MeHg) and inorganic mercury (IHg) were assessed and compared in different tissues (liver, muscle, and gonads) of three common fish species (hake Merluccius merluccius, red mullet Mullus surmuletus, and sole Solea solea) from the continental shelf from the southern part of the Bay of Biscay. Several studies investigated Hg concentration in fish muscle, but few assessed concentrations in other organs, despite the importance of such data to understand contaminant organotropism and metabolization. Results showed that trophic position and feeding habitat are required to understand the variability of Hg concentration in muscle between fish species. In addition, high MeHg/THg ratio in muscle could be explained by the predatory behavior of the studied fish species and the biomagnification of this Hg species within the food web, MeHg. Despite differences between species, Hg concentration was always higher in muscle (from 118 ± 64 to 338 ± 101 ng g-1 w.w.) and liver (from 122 ± 108 to 271 ± 95 ng g-1 w.w.). These results can be related to physiological processes especially the MeHg detoxification strategies.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Baías , Ecossistema , Monitoramento Ambiental , Peixes , Cadeia Alimentar , França , Mercúrio/análise , Compostos de Metilmercúrio/análise , Poluentes Químicos da Água/análise
4.
Sci Total Environ ; 673: 511-521, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-30995585

RESUMO

Submarine canyons are important stocks of commercial interest fish, whose consumption is one of the main monomethymercury (MeHg) exposure to humans. Currently, biogeochemistry of mercury in those biologically productive system is unknown. In this work, inorganic mercury (Hg(II)) and organic mercury (MeHg) distributions were measured in sedimentary accumulative zones (slopes and terraces) against adjacent continental shelf sediments. Hg compound concentrations in these sediments show a huge range of concentrations (Hg(II) ranging from 18 to 973 ng g-1 and MeHg ranging from 0.07 to 2.03 ng g-1) exhibiting factors 50 and 20 fold, respectively. Higher values of mercury compounds were observed in canyon locations suggesting a high accumulation of mercury associated with higher values of clay fraction and organic matter content. The reactivity of mercury was investigated in sediment of three locations along Capbreton submarine canyon axis using slurry incubations experiments and isotopic tracers. Specific methylation and demethylation rate constants (kM and kD) were calculated. Results clearly showed that MeHg concentrations in these sediments are controlled by competing and simultaneous methylation and demethylation reactions mainly mediated by biotic process. Mercury reactivity was found higher in coastal stations compared to the offshore station due to more labile organic matter which may stimulate microbial activities. However, higher net MeHg production was estimated for the offshore station due to high Hg(II) concentrations suggesting a potential MeHg source for such marine environments.

5.
Sci Rep ; 5: 15614, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26494107

RESUMO

Carbon emissions to the atmosphere from inland waters are globally significant and mainly occur at tropical latitudes. However, processes controlling the intensity of CO2 and CH4 emissions from tropical inland waters remain poorly understood. Here, we report a data-set of concurrent measurements of the partial pressure of CO2 (pCO2) and dissolved CH4 concentrations in the Amazon (n = 136) and the Congo (n = 280) Rivers. The pCO2 values in the Amazon mainstem were significantly higher than in the Congo, contrasting with CH4 concentrations that were higher in the Congo than in the Amazon. Large-scale patterns in pCO2 across different lowland tropical basins can be apprehended with a relatively simple statistical model related to the extent of wetlands within the basin, showing that, in addition to non-flooded vegetation, wetlands also contribute to CO2 in river channels. On the other hand, dynamics of dissolved CH4 in river channels are less straightforward to predict, and are related to the way hydrology modulates the connectivity between wetlands and river channels.

6.
Sci Total Environ ; 512-513: 296-307, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25634734

RESUMO

In order to investigate spatio-temporal variations in the composition and origin of the benthic organic matter (OM) at the sediment surface in mangrove receiving shrimp farm effluents, fatty acid (FA) biomarkers, natural stable isotopes (δ(13)C and δ(15)N), C:N ratios and chlorophyll-a (chl-a) concentrations were determined during the active and the non-active period of the farm. Fatty acid compositions in surface sediments within the mangrove forest indicated that organic matter inputs varied along the year as a result of farm activity. Effluents were the source of fresh particulate organic matter for the mangrove, as evidenced by the unsaturated fatty acid (UFA) distribution. The anthropogenic MUFA 18:1ω9 was not only accumulated at the sediment surface in some parts of the mangrove, but was also exported to the seafront. Direct release of bacteria and enhanced in situ production of fungi, as revealed by specific FAs, stimulated mangrove litter decomposition under effluent runoff condition. Also, microalgae released from ponds contributed to maintain high benthic chl-a concentrations in mangrove sediments in winter and to a shift in microphytobenthic community assemblage. Primary production was high whether the farm released effluent or not which questioned the temporary effect of shrimp farm effluent on benthic microalgae dynamic. This study outlined that mangrove benthic organic matter was qualitatively and quantitatively affected by shrimp farm effluent release and that responses to environmental condition changes likely depended on mangrove stand characteristics.


Assuntos
Aquicultura , Crustáceos , Monitoramento Ambiental , Águas Residuárias/análise , Poluentes da Água/análise , Animais , Eutrofização , Sedimentos Geológicos/química , Nova Caledônia , Águas Residuárias/estatística & dados numéricos , Poluição da Água/estatística & dados numéricos
7.
Sci Total Environ ; 502: 617-26, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25302449

RESUMO

Carbon budgets in mangrove forests are uncertain mainly due to the lack of data concerning carbon export in dissolved and gaseous forms. Temporal variability of in situ CO2 fluxes was investigated at the sediment-air interface in different seasons in different mangrove stands in a semi-arid climate. Fluxes were measured using dynamic closed incubation chambers (transparent and opaque) connected to an infra-red gas analyzer. Microclimatic conditions and chl-a contents of surface sediments were determined. Over all mangrove stands, CO2 fluxes on intact sediments were relatively low, ranging from -3.93 to 8.85 mmolCO2·m(-2)·h(-1) in the light and in the dark, respectively. Changes in the fluxes over time appeared to depend to a great extent on the development of the biofilm at the sediment surface. We suggest that in intact sediments and in the dark, CO2 fluxes measured at the sediment-air interface rather reflect the metabolism of benthic organisms than sediment respiration (heterotrophic and autotrophic). However, without the biofilm, sediment water content and air temperature were main drivers of seasonal differences in CO2 fluxes, and their influence differed depending on the intertidal location of the stand. After removal of the biofilm, Q10 values in the Avicennia and the Rhizophora stands were 1.84 and 2.1, respectively, revealing the sensitivity of mangrove sediments to an increase in temperature. This study provides evidence that, if the influence of the biofilm is not taken into account, the in situ CO2 emission data currently used to calculate the budget will lead to underestimation of CO2 production linked to heterotrophic respiration fueled by organic matter detritus from the mangrove.


Assuntos
Poluentes Atmosféricos/análise , Dióxido de Carbono/análise , Monitoramento Ambiental , Sedimentos Geológicos/química , Poluentes da Água/análise , Áreas Alagadas , Avicennia , Nova Caledônia
8.
Nature ; 505(7483): 395-8, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24336199

RESUMO

River systems connect the terrestrial biosphere, the atmosphere and the ocean in the global carbon cycle. A recent estimate suggests that up to 3 petagrams of carbon per year could be emitted as carbon dioxide (CO2) from global inland waters, offsetting the carbon uptake by terrestrial ecosystems. It is generally assumed that inland waters emit carbon that has been previously fixed upstream by land plant photosynthesis, then transferred to soils, and subsequently transported downstream in run-off. But at the scale of entire drainage basins, the lateral carbon fluxes carried by small rivers upstream do not account for all of the CO2 emitted from inundated areas downstream. Three-quarters of the world's flooded land consists of temporary wetlands, but the contribution of these productive ecosystems to the inland water carbon budget has been largely overlooked. Here we show that wetlands pump large amounts of atmospheric CO2 into river waters in the floodplains of the central Amazon. Flooded forests and floating vegetation export large amounts of carbon to river waters and the dissolved CO2 can be transported dozens to hundreds of kilometres downstream before being emitted. We estimate that Amazonian wetlands export half of their gross primary production to river waters as dissolved CO2 and organic carbon, compared with only a few per cent of gross primary production exported in upland (not flooded) ecosystems. Moreover, we suggest that wetland carbon export is potentially large enough to account for at least the 0.21 petagrams of carbon emitted per year as CO2 from the central Amazon River and its floodplains. Global carbon budgets should explicitly address temporary or vegetated flooded areas, because these ecosystems combine high aerial primary production with large, fast carbon export, potentially supporting a substantial fraction of CO2 evasion from inland waters.


Assuntos
Dióxido de Carbono/análise , Rios/química , Áreas Alagadas , Atmosfera/química , Brasil , Ciclo do Carbono , Lagos/química , Plantas/metabolismo , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...